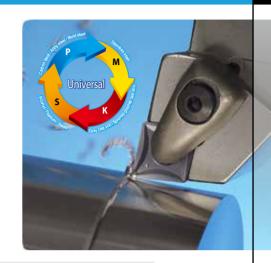
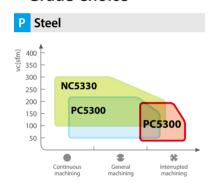
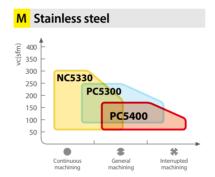
KORLOY'S MORE WAYS TO SAVE"

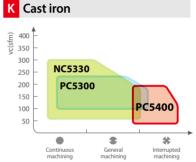
VALID THROUGH DECEMBER 31, 2015 END USER PROMOTION CATALOG


PC5300/PC5400/NC5330

One Choice for Most of Your Turning Applications


Only \$3.99 Each


Limited Time Offer


Does NOT include VP chipbreakers

Grade Choice

Chip breaker Choice

(H 🔷 (VH 🔷 (VT) 💠

Negative inserts

#

Roughing

Positive inserts

- Limited to Stock Standard Inserts Only
- Limited to M Class 4 series inserts
- · Limit of 500 pcs per customer

RICH MILL RM4

Heavy Duty Free Cutting 90° Face Mill

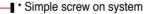
The Definition of High Performance

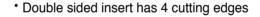
GET FREE CUTTER

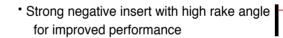
with the purchase of 10 inserts per inch of cutter diameter

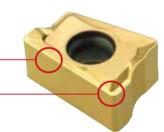
Facing

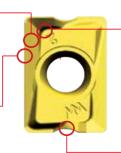
Shouldering

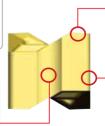

Slotting


Ramping


Helical cutting


 Through coolant system Longer tool life due to direct cooling injection into the cutting edge of insert





Insert

- Chip breaker High rake angle chip breaker / Improving chip control
- Major cutting edge
 High rake angle chip
 breaker / Better
 surface roughness

- Step design Improving chip control / Reducing cutting load
- Concave design 4 cutting edges / Minimize interference

- Minor cutting edge Special design of cutting edge to improve surface roughness
- Clearance face Strong negative face. Strong cutting edge

- · Limited to Stock Standard Cutters and Inserts
- Includes RM4Z cutters
- Limit of 6 free cutters per customer per quarter

HRMD

High Feed Milling

You Have to Run It to Believe It

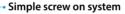
GET FREE CUTTER

And 1 year Replacement Warranty

with the purchase of 10 inserts per inch of cutter diameter

Ramping

Helical cutting



Shouldering

Slotting

Inner coolant system

- Improvement of chip control and evacuation
- Longer tool life due to reduced cutting temperature
- High rake angle cutting edge reduces cutting load

- Strong clamping
- Convenient clamping
- Wide chip pocket for better chip evacuation
- Negative design with high rake angle

3-Surface constrained System

- Strong clamping
- Stable clamping against different cutting resistances in various machining applications
- 6 cutting edges

Features

/ 0.008

/ 0.008

NOTE: Some insert feature information is repeated.
This occurs because multiple insert features provide the same benefit.

Example: Symmetrical design.

- Symmetrical design insert for RH/LH type tool
- Superior cutting performance due to high rake angle cutting edge
- Low cutting resistance in high feeds
- Special design for decreasing thrust force

Minor cutting edge

- Improvement of surface roughness in high feed machining
- Special design for decreasing thrust force
- Symmetrical insert design for RH/LH type tool

Nose-R

- Security of rigid edge in ramping pocket machining
- Round edge insert geometry suitable for high feed rates
- Possible to use RH/LH type machining

Clamping surface

- Designed for stable clamping
- Designed to prevention chip friction

Chip breaker

- Reduction of cutting loads due to high rake angle
- Improvement of chip flow and evacuation in various applications and materials
- Reduces damage on the clamping face of the insert

Note

- · Limited to Stock Standard Cutters and Inserts
- · Limited to M Class inserts
- Limit of 12 free cutters per customer per quarter

Warranty requires registration of cutter with Korloy America. Subject to limitations. Korloy America reserves the right to change the terms and conditions of the Warranty.

Insert

3P's - High Performance, Perpendicularity, and Precision

Buy 10 inserts and **GET a Free cutter body**

Facing

Shouldering

Slotting

Ramping

Helical cutting

Features

Long Edge Milling Performance in Aluminum, Stainless Steel, and HRSA materials.

Enhanced chip flow and increased tool life by inner coolant system

Strong clamping with 2 screw design

Set of various Nose-R

Improved perpendicularity and decreased cutting resistance due to application of High Helix

Chip breaker

Usage	Insert's type		Edge type	Features
AI	AI MA			Application of the edge optimized for Aluminum machining and buffed finish ensure excellent machining quality
Hard-to-cut material	ML	00		Design of Low cutting resistance Chip Breaker ensures excellent machining quality for light cutting and Hard-to-cut material

- · Limited to Stock Standard Cutters and Inserts
- Limit of 4 free cutters per customer per guarter

category	M (STS)	N (Non-feerous metal-Al)	S (HRSA)
Grade	PC5300 / PC5400	H01	PC5300 / PC5400
MA		0	
ML	0	2	0

Precision Machining with Korloy Quality, Performance, Value, and Now MORE Flexibility

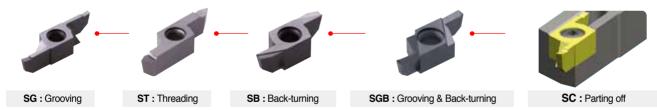
Buy 20 Auto Tool inserts and

Get a Matching Tool Holder for Free


Features

- Excellent for precision machining
- Excellent for complicated machining
- Excellent for small part machining
- Available for various types of machining
- Whole inserts can be clamped on only one FGT holders
- ISO whole holders Offset "0"

Type


FGT

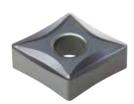
MGT

Multi functional auto tool(FGT)

Possible to clamp on only one holder (Ex: 06 size whole inserts - Clamping on the 06 size holder)

Recommended cutting condition

Workpiece	Turr	ning	Groo	ving	Partir	ng off	Back-turning		
	Cutting Speed(sfm)	Feed(ipr)							
Stainless steel	160~400	0.0008~0.0079	100~400	0.0008~0.0020	160~400	0.0008~0.0020	100~400	0.0008~0.0079	
Carbon steel	160~490	0.0004~0.0098	160~490	0.0008~0.0031	160~490	0.0008~0.0031	160~490	0.0004~0.0098	
Free-cutting steel	100~490	0.0008~0.0098	100~490	0.0008~0.0031	100~490	0.0008~0.0031	100~490	0.0004~0.0098	
Non-ferrous metal	230~660	0.0012~0.0098	230~660	0.0012~0.0039	230~660	0.0012~0.0039	230~660	0.0012~0.0118	


- · Limited to Stock Standard Holders and Inserts
- · Limited to M Class inserts
- · Limit of 12 free holders per customer per guarter

VP SERIES CHIPBREAKER

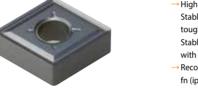
High Performance in Stainess Steel and High Temp Alloys

Introductory Price of Only \$3.29 each

• Sharp cutting edge and minimized cutting heat

VP1 (for finishing)

- High positive cutting edge Longer tool life due to minimizing chip contact and reducing cutting heat while machining
- ··· Recommended cutting conditions fn (ipr) = 0.002~0.008, ap (inch) = 0.004~0.060


• VP2 (for medium to finishing)

- High positive cutting edge and side rake angle Improved machining performance with stable chip control in ball machining with various depth of cuts
- ··· Recommended cutting conditions

VP3 (for medium machining)

- High positive cutting edge and wide land Stable machinability in interrupted machining toughness
- Stable chip evacuation and machining in machining with high depth of cut
- ··· Recommended cutting conditions fn (ipr) = 0.004~0.018, ap (inch) = 0.02~0.2

Recommended cutting condition

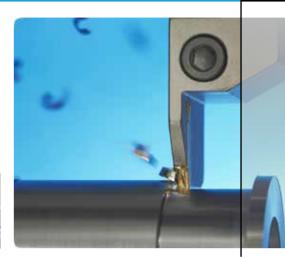
(inch)											
ISO	West stars	Standard	НВ	CVD	PV	D					
ISO	Workpiece	Standard	ПВ	NC5330	PC8110	PC5300					
		STS409	165	295~755	490~820	330~720					
	Ferrite Stainless Steel	STS430	180	295~755	490~820	330~720					
		STS444	220	260~720	395~755	295~655					
		STS304	180	260~820	490~920	330~790					
	Austenitic Stainless Steel	STS316	200	260~720	395~820	295~690					
M		STS410	200	295~755	430~820	330~720					
	Martensite Stainless Steel	STS420J1	220	295~755	430~820	330~720					
		STS420J2	230	260~720	430~790	330~690					
	Precipitation hardening	STS630	300	130~360	260~590	165~490					
	Stainless Steel	STS631	300	130~360	260~590	165~165					
		Inconel	220~300	50~165	130~295	65~230					
	Nickel base alloys	Nimonic	350	50~165	130~230	65~200					
		Hastelloy	160	50~165	130~295	65~230					
	Cobalt base alloys	Stellite	370	50~165	100~260	65~200					
M		17-4-PH	250	115~260	100~230	65~200					
	Iron base alloys	Incoloy	180	115~260	100~230	65~200					
	· · · ·	Ti-6246	200	130~490	200~655	165~560					
	Titanium alloys	Ti-6Al-4V	250~310	130~490	165~590	130~490					
	Stainless steel+Inconnel			50~165	130~260	65~200					
M,S	Stainless steel + Stellite			50~165	130~260	65~200					

- Limited to Stock Standard M Class 4 Series Inserts
- Limit of 100 inserts per customer at \$3.29 Introductory Price
- · Additional 400 VP inserts may be purchased at \$4.32 each

More Performance, More Precision, More Stability

Introductory Offer Buy Any KGT Holder and receive

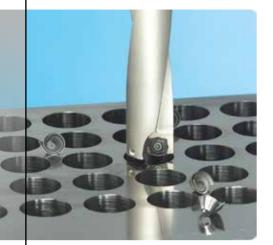
10 Free Inserts


Clamping area

Strong clamping → Higher machining reliability

- Self-centering → Higher accuracy
- Anti-chatter design → Fine surface finish

Recommended Insert


	0	Picture	Application											
Designation			For ext	ternal mad	chining	For face grooving		For Internal machining		Copying	For reliefing	Special machining		
	Geometry	Picture	Parting	Grooving	Turning	Grooving	Turning	Grooving	Turning	Copying	Reliefing	Special		
				<u></u>	4			+						
	L Light Grooving	The same of the sa	0	0		0								
KGMN	R Rough Grooving		0	0		0								
	T Turning-Multi Grooving		0	0	0	0	0							
КСМІ	T Internal Grooving	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa						0	0					
KRMN	C Copying									0	0			
KGMR/L	LP Light Parting	No. of the last of	0											
AGIVIR/L	RP Rough Parting		0											
KGGN	B Blank											0		

© First choice. O Second choice

- · Limited to Stock Standard Holders and Inserts
- · Limited to M Class inserts
- Limit of 12 free cutters per customer per quarter

KING DRILL

High Performance and Improve Chip Evacuation

Buy 20 Inserts and Receive a
Free Drill body up to 1.0 inch
Buy 40 Inserts and Receive a
Free Drill body up to 2.0 inch

Features

Central insert

Peripheral insert

Optimized design of inserts for maximum drilling efficiency

- Excellent cutting performance and chip control due to the optimized geometry and chip breaker of both inserts, central & peripheral.
- ▶ Different inserts, optimized for the central and peripheral insert locations in order to maximize cutting tool life.

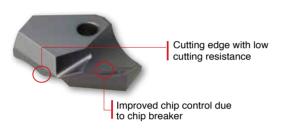
Recommended cutting condition

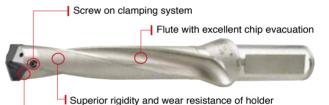
							Feed(aspect ratio=2D, 3D, 4D)					
		Workpiece		Grade		vc	Feed (ipr) depending on drill Dia.(inch)					
	ISO Workpiece Hardness(HB)					sfm	0.47~0.63	0.64~0.91	0.92~1.14	1.15~1.65	1.66~2.36	
	Carbon	Low carbon steel	80~180	LD PD	Central PC5335 Central Pc5300 Peripheral	492(197~591) 623(427~820)	0.0016~0.0031	0.0016~0.0031	0.0016~0.0031	0.0031~0.0071	0.0016~0.0031	
	steel	High carbon	180~280	PD	Central PC5300 Peripheral PC3500	459(262~656)	0.0016~0.0039	0.0016~0.0047	0.002~0.0063	0.0031~0.0071	0.0039~0.0087	
		Low alloy	1	LD	Central PC5335	492(197~591)	0.0024~0.0039	0.0024~0.0039	0.0024~0.0063	0.0024~0.0079	0.0024~0.0079	
Р		steel	140~260	PD	Central PC5300	492(295~656)	0.0016~0.004	0.002~0.005	0.003~0.0063	0.0031~0.0079	0.0031~0.0094	
	Alloy steel	Low pre - hardened	200~400	PD	Central PC5300 Peripheral PC5300	328(164~492)	0.0016~0.004	0.002~0.005	0.003~0.0063	0.0031~0.0071	0.0031~0.0087	
		Low alloy steel	50~260	PD	Central PC5300 Peripheral PC3500	328(164~525)	0.0016~0.007	0.002~0.005	0.003~0.0063	0.0031~0.0071	0.0031~0.0087	
		High pre- hardenedsteel	220~450	PD	Central PC5300 Peripheral PC5300	230(98~394)	0.0016~0.005	0.002~0.006	0.0031~0.0067	0.0031~0.0067	0.0031~0.0079	
		Austenite	I	LD	Central PC5335		0.0016~0.004	0.0024~0.0047	0.0024~0.0047	0.0024~0.0047	0.0024~0.0047	
м	Stainless	series	135-275	PD	Peripheral PC5300	295(131~492)	0.0016~0.004	0.0024~0.0047	0.0024~0.0055	0.0024~0.0063	0.0024~0.0079	
IVI	steel	Ferrite series	1	LD	Central PC5335		0.0016~0.004	0.0024~0.0047	0.0024~0.0047	0.0024~0.0047	0.0024~0.0047	
		Martensite series	135~275	PD	Central PC5300	328(197~525)	0.0016~0.004	0.0016~0.0047	0.0024~0.0055	0.0024~0.0063	0.0024~0.0079	
K	Cast iron	Gray cast iron	150~230	PD	Central PC5300 Peripheral PC6510	623(492~820)	0.0016~0.004	0.002~0.0055	0.0024~0.0063	0.0039~0.0087	0.0039~0.0102	
- K	Gastiluit	Ductile cast iron	150~230	PD	Central PC5300 Peripheral PC6510	492(328~656)	0.0016~0.005	0.0024~0.0063	0.0031~0.0071	0.0031~0.0079	0.0039~0.0087	
	Heat			PD	PC5300	164(98~328)						
S	resisting			PD	PC5300	131(98~295)						
	alloy			PD	PC5300	131(66~262)		1				

In case of 5D, reduce 30~40% of cutting condition from the above

- · Limited to Stock Standard Bodies and Inserts
- · Limited to 2D and 3D drills, Available in 5D for 40 and 60 inserts
- Limit of 6 free bodies per customer per quarter

In interrupted machining part, reduce 30~50% of feed from the above machining around interrupted pa




3D, 5D, and 8D Drills for Combined Precision and Productivity

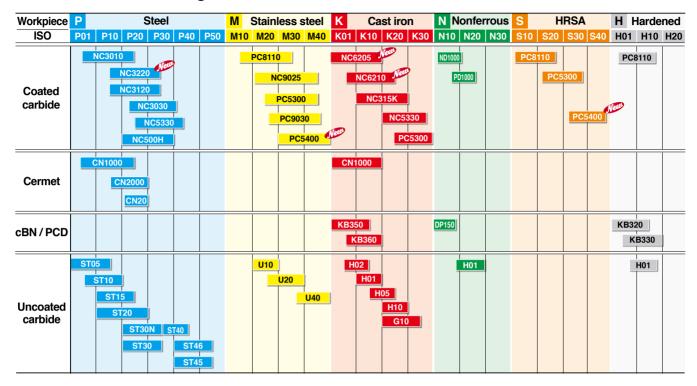
Auto-centering system

Free Drill Body or Buy 2 tips and Get 1 tip free

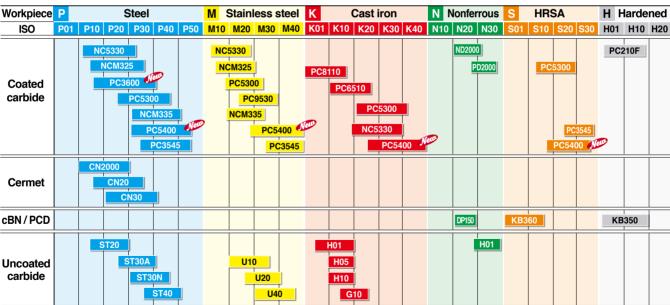
Free tip offer limited to tip of equal or lower price of purchased tips.

- · High precision clamping system.
- · Cutting edge produces superior surface finishes.
- · Holder with superb durability.

Recommended cutting condition


		Workpiece		VC		fn(aspect ratio=3D~5D)					
		Workpiece		Grade	VC	Feed(ipr) per drill Dia.(inch)					
	ISO	Workpiece	HB		sfm	0.3937~0.6260	0.6300~0.9803	0.9843~1.1772			
	Carbon	Low carbon	80-120	PC5300	365(265 - 464)	0.0059~0.0118	0.0079~0.0138	0.0098~0.0157			
	steel	High carbon	180~280	PC5300	332(232 - 431)	0.0059~0.0118	0.0079~0.0138	0.0098~0.0157			
P		Low alloy steel	140~260	PC5300	365(265 - 464)	0.0071~0.0138	0.0091~0.015	0.0110~0.0169			
	Alloy steel	Low pre-hardened 200~400		PC5300	249(166 - 332)	0.0071~0.0138	0.0091~0.015	0.0110~0.0169			
	Alloy Steel	High alloy steel 50-260		PC5300	243(100 - 332)	0.0071~0.0130	0.0091~0.013	0.0110~0.0109			
		High pre-hardened	220~450	PC5300	232(166 - 298)	0.0071~0.0118	0.0079~0.0138	0.0098~0.0157			
М	Stainless	Austenite	135-275	PC5300	199(133 - 265)	0.0071~0.0118	0.0079~0.0138	0.0098~0.0157			
	Steel	Ferrite series	135-275	PC5300	166(99-232)	0.0051~0.0098	0.0059~0.0118	0.0067~0.0130			
К	Cast Iron			PC5300	182(133-232)	0.0051~0.0098	0.0059~0.0118	0.0067~0.0130			
				PC5300	365(265 - 464)	0.0071~0.0138	0.0079~0.0157	0.0098~0.0177			
	Heat	Ni pre-hardened		PC5300	332(232 - 431)	0.0071~00.0138	0.0079~0.0157	0.0098~0.0177			
s	Resisting	Ti pre-hardened		PC5300	332(232 401)	0.507 1-00.0100	0.0070-0.0107	0.0000 0.0177			
	Steel	High hardened		PC5300	133(66 - 199)	0.0039~0.0079	0.0047~0.0087	0.0051~0.0098			

- \bullet In case of 8D, reduce the cutting conditions to 40~50% or machine the beginning of hole first.(1.5D)
- \cdot In case of interrupted machining, reduce the feed to 30~50% machining around the interrupted part.


· Limited to Stock Standard Bodies and Inserts

• Limit of 6 free bodies per customer per quarter

Grade Chart for Turning

Grade Chart for Milling

Korloy will meet or beat any published promotional offer of any competitor. Ask your Korloy representative for more details or call at 1-888-711-0001

THE GOL